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Abstract

The governing differential equations for the free in-plane vibration of uniform and non-uniform curved beams with

variable curvatures, including the effects of the axis extensibility, shear deformation and the rotary inertia, are derived

using the extended-Hamilton principle. These equations were then solved numerically utilizing the Galerkin finite element

method and the curvilinear integral taken along the central line of the curvilinear beam. Based on the proposed finite

element formulation, one can easily study curved beams having different geometrical and boundary conditions.

Furthermore, those curved beams, excluding the effects of the axis extensibility, shear deformation and the rotary inertia,

are modeled and then solved utilizing the finite element method using a new non-isoparametric element. The results for the

natural frequencies, modal shapes and the deformed configurations are presented for different types of the curved beams

with various geometrical properties and boundary conditions, and in order to illustrate the validity and accuracy of the

presented methodology they are compared with those published in literature.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the free in-plane vibration of a curved beam using the beam theory is more complex than the
analogous problem in a straight beam, since the structural deformations in a curved beam depends not only on
the rotation and radial displacements but also on the coupled tangential displacement caused by the curvature
of the structure. Many theories have been evolved to derive, simplify and solve the equations of motion for the
free in-plane vibration of the curved beams. Most of the studies are generally focused on the uniform circular
arc, and the relative equations of motion are solved using the Rayleigh–Ritz method. Henrych [1] derived the
general expression of the equations of motion for a uniform circular arc based on the first-order equilibrium
condition. Auciello and Rosa [2] ignored the shear deformation and rotary inertia, and assumed that the
curved axis is incompressible. Veletsos and Austin [3] disregarded the shear deformation and the extensibility
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area of beam
E elastic modulus
G shear modulus
I area moment of inertia of beam
J mass moment of inertia density of

Timoshenko beam
kq sectional shear coefficient of the curved

beam
l length of the curved beam
L span length of the curved beam

m density per unit length of beam
M and K mass and stiffness matrices
S curvilinear coordinate
T kinetic energy
u tangential displacement
V potential energy
w radial displacement
b beam rotation due to shear
g density of material
Z natural coordinates
j rotation due to tangential displacement
W beam rotation due to bending
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of the curve axis and assumed that the tangential and the radial displacements are uncoupled. Wolf [4]
analyzed the free vibration of elastic circular arches using 99 straight Euler–Bernoulli beam segments to
approximate the arch. Eisenberger and Efraim [5] studied the uniform circular beams using the Timoshenko
beam theory, which includes the effects of rotary inertia, shear deformation, and the couplings of the radial
and tangential displacements.

It has been shown that the Timoshenko beam theory provides a better approximation to the actual behavior
of beams, in which the effect of the cross-sectional dimension on frequencies cannot be neglected, and the
study of high modes is required. Friedman and Kosmatka [6] utilized the Ritz method based on the
trigonometric functions and derived the exact static stiffness matrix for the uniform circular curved beams.
Kang et al. [7] utilized the differential quadrate method (DQM) to compute the eigenvalues of the equations of
motion governing the uniform circular curved beams.

Irie et al. [8] and also Yildirim [9] solved the equations of motion using the transfer matrix method and
Veletsos and Austin [3] presented the numerical solutions for the first eight lowest natural frequencies of
circular arches. Subsequently, they investigated the effects of the previously neglected factors (the rotary
inertia and the shear deformation) and developed an approximate and simplified procedure to estimate the
natural frequencies of the circular arches [10]. The general dynamic stiffness matrix for a uniform circular
curved beam was derived by Issa et al. [11].

For a non-uniform circular beam, Laura and Verniere [12] studied a circular beam with linear varying
thickness. Tong et al. [13] ignored the shear deformation and rotary inertia, and assumed the incompressible
curve axis. ÖztÜrk et al. [14] ignored the shear deformation and the extensibility of the curve axis but they
assumed that the tangential and radial displacements are uncoupled. Lee and Hsiao [15] ignored the shear
deformation and the extensibility of curved axis. For the non-circular arches, Tseng et al. [16] analyzed the
parabolic and elliptic arches to obtain their natural frequencies. The natural frequencies for the elliptical,
parabolic and sinusoidal arches were also found by Oh et al. [17].

Utilizing finite element (FE) method to solve the curved beams problem can be found in some published
papers. Friedman and Kosmatka [6] utilized the trigonometric functions as the interpolation function and
their approach was basically based on the Ritz method. Raveendranath et al. [18] utilized three kinds of two-
node elements to study the curved beam. Litewka and Rakowski [19] utilized the same interpolation function
given in Ref. [6]. Wu and Chiang [20] presented a set of interpolation function based on Ref. [6], while ÖztÜrk
et al. [14] utilized a set of trigonometric functions as the interpolation function. In fact, the interpolation
(shape) function utilized in many publications in relation with the FE method in curved beams are based on
two published papers by Petyr and Fleischer [21] and Davis et al. [22]. All these papers utilized the two-node
element to study the circular curved beam. For the circular curved beam, the radius of curvature is constant
(R) and thus the problem can be simplified by interchanging the curvilinear coordinates s with the arch
angle (y).
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It can be realized that not much work has been done on either uniform or non-uniform curved beams with
variable curvatures. In particular, no further work based on the FE approach has been reported on these types
of structure. Considering this fact, the main objective of this study is to develop the FE model for the general
curved beams with variable curvature and for both uniform or non-uniform cross-sectional areas and different
boundary conditions. The governing equations of motion are derived using the extended-Hamilton principle
and then the weighted residual technique, based on the Galerkin method, is utilized to transfer the governing
equations into the FE form. Initially, the FE model of the curved beam including the effect of the axis
extensibility, shear deformation and the rotary inertia (Case 1) is developed. Subsequently, the curved beam
has been modeled as an inextensible beam, in which the effects of the shear deformation and the rotary inertia
are neglected (Case 2).

An innovative FE method is presented to solve the curved beam problems for Case 2. Efficient numerical
techniques, based on the curvilinear integral taken along the central line of the curvilinear beam, and the
Gaussian integral method [23] have been implemented to solve the governing FE equations. The results for the
natural frequencies, modal shapes and the deformed configurations of different curved beams with different
boundary condition are obtained and compared with those reported in literature.
2. Mathematical modeling

The geometry of the general symmetric curved beam is illustrated in Fig. 1. Two different cases will be
investigated in this study: Case 1—the effects of the extensibility of the curved axis, shear deformation, and the
rotary inertia are all considered; and Case 2—all these effects have been totally ignored. The geometrical and
deformational relationships for both Cases are summarized in Table 1.

The parameters L, F and h in Fig. 1 and Table 1 are the span length, the curve angle, and the rise of the
curved beam, respectively. The coordinate S is along the central line and y(x) is the function describing the
central line. Parameters w(s), u(s), j(s), c(s) and b(s) are the respective beam radial displacement, the
tangential displacement, the rotation due to the tangential displacement, the rotation due to the bending and
the rotation due to the shear along the S coordinate. Furthermore, r(s), uT(s), dw(s)/ds and w(s)/r(s) are the
curved beam radius of curvature, the beam total tangential displacement, the total rotation and the tangential
displacement due to the radial displacement along the S coordinate, respectively.

The extended-Hamilton theory principle was used to derive the governing differential equations of motion:Z t2

t1

ðdT � dV þ dW ncÞdt ¼ 0; dð:Þ ¼ 0 at t ¼ t1; t2, (1)

where the kinetic energy (T) and the potential energy (V) in its most general form (Case 1) can be written as

T ¼
1

2

Z
L

mðsÞ
qwðs; tÞ

qt

� �2

dsþ
1

2

Z
L

JðsÞ
qcðs; tÞ

qt

� �2

dsþ
1

2

Z
L

mðsÞ
quðs; tÞ

qt

� �2

ds (2)
Fig. 1. Curved beam geometry.
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Table 1

Geometrical and deformational relationships for Cases 1 and 2

Case 1 Case 2

Radial displacement w(s) w(s)

Differential of the tangential displacement duT(s)/ds ¼ du(s)/ds+w(s)/r(s) 0 ¼ du(s)/ds+w(s)/r(s)
Rotation due to the tangential displacement j(s) ¼ u(s)/r(s) j(s) ¼ u(s)/r(s)
Total rotation dw(s)/ds ¼ b(s)+c(s)+j(s) dw(s)/ds ¼ c(s)+j(s)
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and

V ¼
1

2

Z
L

EIðsÞ
qcðs; tÞ

qs

� �2

dsþ
1

2

Z
L

kqGAðsÞb2ðs; tÞdsþ
1

2

Z
L

EAðsÞ
quT ðs; tÞ

qs

� �2

ds, (3)

where parameters m(s) and J(s) are the respective density per unit length and the mass moment of inertia
density along the S coordinate and E, G and kq are the elastic modulus, the shear modulus and the sectional
shear coefficient of beams, respectively.

The integral (
R

L[.]) represents the curvilinear integral taken along the S coordinate. It should be noted that
the mass moment of inertia density, J(s), is related to the area moment of inertia, I(s), and the beam material
density, g(s), along the central line of the curvilinear beam by the equation J(s) ¼ g(s)I(s). Here, the non-
conservative virtual work is assumed to be zero as the main purpose of this study is to obtain the natural
frequencies of the curved beams.

The geometrical and deformational expressions for Case 1, listed in Table 1, were substituted into Eqs. (2)
and (3), and by identifying w(s), u(s) and c(s) as the independent variables, and applying Hamilton’s principle
stated in Eq. (1), the following three governing differential equations of motion will be obtained for Case 1 as

�mðsÞ
q2wðs; tÞ

qt2
þ

q
qs

kqGAðsÞ
qwðs; tÞ

qs
�

uðs; tÞ

rðsÞ
� cðs; tÞ

� �� �
�

EAðsÞ

rðsÞ
quðs; tÞ

qs
þ

wðs; tÞ

rðsÞ

� �
¼ 0, (4a)

�mðsÞ
q2uðs; tÞ

qt2
þ

kqGAðsÞ

rðsÞ
�cðs; tÞ þ

qwðs; tÞ

qs
�

uðs; tÞ

rðsÞ

� �
þ

q
qs

EAðsÞ
quðs; tÞ

qs
þ

wðs; tÞ

rðsÞ

� �� �
¼ 0, (4b)

�JðsÞ
q2cðs; tÞ

qt2
þ

q
qs

EIðsÞ
qcðs; tÞ

qs

� �
þ kqGAðsÞ

qwðs; tÞ

qs
� cðs; tÞ �

uðs; tÞ

rðsÞ

� �
¼ 0. (4c)

The FE model of the system will now be developed based on Eqs. (4). By using the natural coordinate
system and the appropriate Lagrangian-type shape functions, the Cartesian coordinate (x(s) and y(s)), the
radial displacement, w(s), the tangential displacement, u(s), the rotation due to bending, c(s), the cross-
sectional area, A(s), and the area moment of inertia, I(s), can be related to their relative nodal values as

xðZÞ ¼ NðZÞx; yðZÞ ¼ NðZÞy; wðZ; tÞ ¼ NðZÞwðtÞ,

uðZ; tÞ ¼ NðZÞuðtÞ; cðZ; tÞ ¼ NðZÞwðtÞ; AðZÞ ¼ NðZÞA; IðZÞ ¼ NðZÞI, (5)

where Z is the natural coordinate (�1pZp1) and N(Z) is the Lagrangian-type shape function matrix and the
state vectors w(t), u(t) and w(t) are the respective nodal radial displacement, the nodal tangential displacement,
and the nodal rotation vectors associated with the radial displacement function, w, the tangential displacement
function, u, and the rotation function, c. Similarly, x, y, A and I are the nodal values associated with the x, y,
A and I functions, respectively.

By applying the Galerkin weighted residual technique to Eqs. (4), substituting the relative functions with
respect to their nodal values as given in Eq. (5), and then utilizing the Jacobin relationship between the
Cartesian coordinate (X and Y), the curvilinear coordinate, S, and the natural coordinate, Z, the following
governing equation of motions in the FE form can be obtained:

M� €qðtÞ þ K� qðtÞ ¼ 0, (6)



ARTICLE IN PRESS
F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867854
where

q ¼ fwðtÞ uðtÞ wðtÞ gT, (6a)

M ¼

Mww 0 0

0 Muu 0

0 0 Mww

2
64

3
75, (6b)

K ¼

Kww Kwu Kww

KT
wu Kuu Kuw

KT
ww KT

uw Kww

2
64

3
75. (6c)

The mass and stiffness sub-matrices given by Eqs. (6b) and (6c) are compiled in Appendix A, and using the
Gauss quadrate technique and the curvilinear integral taken along the central line of curvilinear beam they
were evaluated numerically.

Ignoring the axis extensibility, the shear deformation, and the rotary inertia (Case 2), the kinetic energy (T)
and the potential energy (V) can be simplified as

T ¼
1

2

Z
L

mðsÞ
qwðs; tÞ

qt

� �2

dsþ
1

2

Z
L

mðsÞ
quðs; tÞ

qt

� �2

ds (7)

and

V ¼
1

2

Z
L

EIðsÞ
qcðs; tÞ

qs

� �2

ds. (8)

Substituting the geometrical and deformation relationships for Case 2, as listed in Table 1, into Eqs. (7) and
(8) and selecting w(s) and u(s) as the variables and then applying the Hamilton’s principle stated in Eq. (1), the
following two governing differential equations for Case 2 can be obtained:

mðsÞ
q2wðs; tÞ

qt2
þ

q2

qs2
EIðsÞ

q2wðs; tÞ
qs2

� �
�

q2

qs2
EIðsÞ

rðsÞ
quðs; tÞ

qs

� �
¼ 0, (9a)

mðsÞ
q2uðs; tÞ
qt2

þ
q
qs

EIðsÞ

rðsÞ
q2wðs; tÞ

qs2

� �
�

q
qs

EIðsÞ

r2ðsÞ
quðs; tÞ

qs

� �
¼ 0. (9b)

These two equations can be combined utilizing the incompressible assumption for Case 2 to obtain
a single governing differential equation of order 6 with respect to the tangential displacement, u [1].
The FE model of the system can simply be developed based on Eqs. (9). For this case, the Lagrangian-type
shape function, similar to Case 1, is utilized to relate the Cartesian coordinate (x(s) and y(s)), the
cross-sectional area function, A(s) and the area moment of inertia function, I(s), to their relative nodal values
of x, y, A and I:

xðZÞ ¼ NðZÞx; yðZÞ ¼ NðZÞy; AðZÞ ¼ NðZÞA; IðZÞ ¼ NðZÞI, (10)

A polynomial equation of order 5 would then be used to describe the tangential displacement for this case as
it will satisfy the governing differential equation with respect to the tangential displacement obtained by
combining Eqs. (9) as

uðZÞ ¼ c0 þ c1Zþ c2Z2 þ c3Z3 þ c4Z4 þ c5Z5. (11)

Using Table 1 for Case 2, the radial displacements and the rotations are related to the tangential
displacements as

wðZÞ ¼ �
du

dZ
rðZÞ

JocðZÞ
and cðZÞ ¼

dw

dZ
1

JocðZÞ
�

uðZÞ
rðZÞ

, (12)
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where the Jacobian, Joc(Z), can be obtained using

JocðZÞ ¼
ds

dZ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dZ

� �2

þ
dy

dZ

� �2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBðZÞxÞ2 þ ðBðZÞyÞ2

q
, (13)

where B(Z) ¼ d(N(Z))/dZ.
The displacement function, u(Z), can be related to the six degrees-of-freedom (dof) of the two-node curved

beam element (each node has three dof u, w, c) with nodes i and j by using Eqs. (11)–(13), as

uðZÞ ¼ NNf ui wi ci uj wj cj g
T, (14)

where NN is the shape function matrix, which can be calculated from Eqs. (10) to (14). It is noted that the
radius of curvature can be evaluated from the expression

1

r
¼

y00

ð1þ y02Þ1:5
. (15)

Finally, by applying the Galerkin weighted residual technique to the governing differential equations stated
in Eq. (9), the FE form of the governing equations for Case 2, similar to Eq. (6), derived for Case 1, can be
obtained. The nodal displacement vector and the mass and the stiffness matrices for this case can be
expressed as

q ¼ fu1;w1;c1; . . . ; un;wn;cng
T, (16)

M ¼
X

element

Z 1

�1

r2ðZÞ
JocðZÞ

BNðZÞ
TgNðZÞABNðZÞ

þr2ðZÞNN ðZÞ
TgNðZÞANN ðZÞJocðZÞÞ

8><
>:

9>=
>;dZ

8><
>:

9>=
>;, (17)

K ¼
X

element

Z 1

�1

rðZÞ
J5

ocðZÞ
DNðZÞ

TENðZÞIDNðZÞ þ
ENðZÞI
J3

ocðZÞ
DN ðZÞ

TBNðZÞ

þ
ENðZÞI
J3

ocðZÞ
BNðZÞ

TDN ðZÞ þ
ENðZÞI

r2ðZÞJocðZÞ
BNðZÞ

TBNðZÞ

8>>><
>>>:

9>>>=
>>>;
dZ

8>>><
>>>:

9>>>=
>>>;

(18)

where n is the total number of nodes to model the curved beam and BN(Z) ¼ d(NN(Z))/dZ, DN(Z) ¼
d3(NN(Z))/dZ

3.

3. Numerical results

In this section, illustrative examples are presented to illustrate the generality and accuracy of the developed
methodology. In order to investigate the effects of the shear deformation, rotary inertia and the axis
extensibility, detailed comparisons of the results are presented for both Cases 1 and 2. All the curved beams
studied for Case 1, are modeled using 10 ‘curved beam elements’ each having 4 nodes per element.
Furthermore, 10 ‘curved beam elements’ (4 nodes per element) are used for Case 2 to evaluate the nodal cross-
sectional area and the moment of inertia, the radius of curvature, and the geometrical Jacobian matrix, and
then ‘10 curved beam elements’ (2 nodes per element), as illustrated in Eq. (14), are employed to evaluate the
nodal displacement vectors for Case 2.

3.1. Extensible curved beam model with the shear deformation and rotary inertia (Case 1)

Here, using the developed methodology, several examples are studied. The examples range from a simple
circular arch to parabolic, elliptical, and the sinusoidal and general curved arches.

Example 1. Uniform circular curved beam with pinned–pinned boundary conditions.
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The uniform circular curved beam with the pinned–pinned boundary condition is considered here. The
beam has the following material and geometrical characteristics:

R=r ¼ 15; l=r ¼ 23:56; F ¼ 90�; R ¼ 0:75m; A ¼ 4m2; I ¼ 0:01m4,

E ¼ 70GPa; kq ¼ 0:85; kqG=E ¼ 0:3; g ¼ 2777 kg=m3,

where R, r ¼ O(I/A), l ¼ RF and g are the radius of the circle, the radius of gyration, the length of the curved
beam and the material density, respectively.

The result for the first 10 non-dimensional natural frequencies, l, (l ¼ ol2O(gA/EI)) are listed in Table 2,
and the associated modal shapes and the deformed configurations are illustrated in Figs. 2 and 3, respectively.
It can be realized that very close agreement between the present results and those published in Refs. [5,10] does
exist. It should be noted that in the modal shape figures, the horizontal axis ‘‘non-dimension beam curvilinear
length’’ is defined by the non-dimensional parameter s/l in which, s is the location along the curved beam
central line. Therefore, s/l varies between zero and one.

Example 2. Uniform circular curved beam with clamped–clamped boundary conditions.

In this example, a uniform circular curved beam with the clamped–clamped boundary is studied. The
geometrical and material properties are

R=r ¼ 15:915; l=r ¼ 25; F ¼ 90�; R ¼ 0:6366m; A ¼ 1m2; I ¼ 0:0016m4,

E ¼ 70GPa; kq ¼ 0:85; kqG=E ¼ 0:3; g ¼ 2777 kg=m3.

The results for the first 10 non-dimensional natural frequencies (l) are listed in Table 3, and the associated
modal shapes and the deformed configurations are presented in Figs. 4 and 5, respectively. Once again, as it
can be seen the results are in very close agreement with those reported in Refs. [5,10].

Example 3. Parabolic, elliptical and sinusoidal uniform curved beams.

In this example, the parabolic, elliptical and the sinusoidal arches, shown in Fig. 6, are investigated for their
natural frequencies. To facilitate the numerical study, the following non-dimensional variables are defined:
f ¼ h/L (arch rise to the span length), SR ¼ L/O(I/A) (slenderness ratio) and x ¼ x/L. The cross-sectional
area, the second moment of area of the beam, and all the beam material properties are similar to those given in
Example 1.

The non-dimensional equation for the parabolic arch (Fig. 6a) is defined as [17]

y ¼ 4f xð1� xÞ; 0oxo1. (19)

The non-dimensional equation for the sinusoidal arch (Fig. 6b) is defined as [17]

y ¼ f � c1 þ c1 sinðc2xþ �c2Þ; 0oxol, (20)
Table 2

Non-dimensional frequencies l ¼ ol2O(gA/EI) of a uniform circular curved beam with the pinned–pinned boundary conditions (Case 1)

Mode Ref. [5] Ref. [10] Present study

1 29.280 29.61 29.306

2 33.305 33.01 33.243

3 67.124 67.24 67.123

4 79.971 79.6 79.950

5 107.851 107.7 107.844

6 143.618 144.5 143.679

7 156.666 155.2 156.629

8 190.477 191.3 190.596

9 225.361 223.7 225.349

10 234.524 235.3 234.809
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Fig. 2. The first 10 vibration modal shapes of uniform circular curved beam with pined–pined boundary conditions. Solid, dashed and

dotted lines represent mode shapes for u, w and c, respectively: (a) the first mode, (b) the second mode, (c) the third mode, (d) the forth

mode, (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode, (i) the ninth mode and (j) the tenth mode.

F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867 857
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Fig. 3. The deformations relative to the first 10 vibration modes for uniform circular curved beam with pined–pined boundary conditions.

Solid and dashed lines represent deformed and undeformed configuration: (a) the first mode, (b) the second mode, (c) the third mode, (d)

the forth mode, (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode, (i) the ninth mode, and (j) the tenth mode.

F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867858
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Table 3

Non-dimensional frequencies l ¼ ol2O(gA/EI) of uniform circular curved beam with clamped–clamped boundary conditions (Case 1)

Mode Ref. [5] Ref. [10] Present study

1 36.703 36.81 36.657

2 42.264 42.44 42.289

3 82.233 82.5 82.228

4 84.491 84.3 84.471

5 122.305 122.5 122.298

6 154.945 155.1 154.998

7 168.203 167.7 168.174

8 204.472 204.599

9 238.992 238.973

10 249.011 249.6 249.320

F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867 859
where

c2 ¼ p=ð1þ 2�Þ; c1 ¼ f =½1� sinð�c2Þ�. (21)

The non-dimensional equation for the elliptical arch (Fig. 6c) can be written as

y ¼ b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1� ½x� b1 cosðaÞ�=b1g

2

q
� b2 sinðaÞ; 0oxo1, (22)

where

b1 ¼ �þ 0:5; a ¼ arccosð0:5=b1Þ; b2 ¼ f =½1� sinðaÞ�. (23)

The numerical results for the first four non-dimensional natural frequencies, l ¼ oL2O(gA/EI) are listed in
Table 4. Results are also in excellent agreement with those reported in Ref. [17].

Example 4. General non-uniform and non-circular curved beams.

To demonstrate the generality of the developed methodology, a general curved beam with the
clamped–clamped boundary condition, shown in Fig. 7, representing an overpass bridge is investigated. It
should be noted this type of curved beam has a variable radius of curvature and also the cross-sectional area
and the area moment of inertia of the beam would vary along the curvilinear central line. The physical
properties of the curved beam are listed in Table 5.

The variations of the first four natural frequencies with respect to the number of elements are shown
in Fig. 8. It can be realized that the natural frequencies converge rapidly with the increase in the number of
elements. As can be seen, there is no significant changes in the natural frequencies when choosing the number
of elements higher than 6. The first four associated modal shapes of vibration and the beam deformations are
illustrated in Figs. 9 and 10, respectively.

3.2. Inextensible uniform curved beam with no shear deformation and rotary inertia (Case 2)

The natural frequencies of a uniform circular beam is once again studied here but this time the effect of the
extensibility, the shear deformation and the rotary inertia of the beam have all been ignored. The parameters
related to the tangential inertial force, which are presented in Eqs. (7), (9) and (17), have also been ignored in
order to compare the result with those reported in literature [1]. The circular beams with different boundary
conditions and different curved angle (F) are analyzed. The 10 non-dimensional natural frequencies
(l ¼ oR2O(gA/EI)) of the circular beam with various curve angles and different boundary conditions are
listed in Tables 6–9, and they were compared with their corresponding values published in Ref. [1].

The last columns of Tables 6 and 7 are the non-dimensional natural frequencies defined by l ¼ ol2O(gA/EI)
for the pinned–pinned and the clamped–clamped circular beam with the curve angle F ¼ 901, respectively.
Comparing these natural frequencies with the corresponding values in Tables 2 and 3, one can realize the
significant effects of the shear deformation, rotary inertia and the axis extensibility, especially, for the higher
modes. For instance, the non-dimensional fundamental natural frequency for the pinned–pinned circular
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Fig. 4. The first 10 vibration modal shapes of uniform circular curved beam with clamped–clamped boundary conditions. Solid, dashed

and dotted lines represent mode shapes for u, w and c, respectively: (a) the first mode, (b) the second mode, (c) the third mode, (d) the forth

mode, (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode, (i) the ninth mode and (j) the tenth mode.

F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867860
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Fig. 5. The deformations relative to the first 10 vibration modes for uniform circular curved beam with clamped–clamped boundary

conditions. Solid and dashed lines represent deformed and undeformed configuration: (a) the first mode, (b) the second mode, (c) the third

mode, (d) the forth mode, (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode, (i) the ninth mode and (j) the

tenth mode.

F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867 861
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Fig. 6. Different types of curved beams: (a) parabolic, (b) sinusoidal and (c) elliptical.

Table 4

Non-dimensional frequencies, l ¼ oL2O(gA/EI) for the parabolic, elliptical and the sinusoidal curved beams with different boundary

conditions (Case 1)

Geometry of arch Mode Ref. [17] Present study

Parabolic 1 21.83 21.759

Hinged–hinged 2 56.00 55.493

f ¼ 0.3, SR ¼ 75 3 102.3 100.701

kqG/E ¼ 0.3 4 113.4 113.302

Elliptic (e ¼ 0.5) 1 35.25 34.892

Hinged–clamped 2 57.11 56.766

f ¼ 0.2, SR ¼ 50 3 83.00 81.420

kqG/E ¼ 0.3 4 128.2 124.288

Sinusoid (e ¼ 0.5) 1 56.3 56.083

Clamped–clamped 2 66.14 66.047

f ¼ 0.1, SR ¼ 100 3 114.3 113.406

kqG/E ¼ 0.3 4 181.7 179.264

X
Y

Fig. 7. General non-uniform and non-circular curved beams representing an overpass bridge.
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Fig. 8. Convergence analysis for the clamped–clamped general non-uniform and non-circular curved beams: (a) first natural frequency,

(b) second natural frequency, (c) third natural frequency and (d) forth natural frequency.

Fig. 9. The first four vibration modal shapes of the general non-uniform and non-circular curved beams with the clamped–clamped

boundary conditions. Solid, dashed and dotted lines represent mode shapes for u, w and c, respectively: (a) the first mode, (b) the second

mode, (c) the third mode and (d) the forth mode.

Table 5

Properties of the general non-uniform and non-circular curved beams

Elastic modulus (E) 70 (GPa) Shear coefficient (kq) 0.8438

Shear modulus (G) 24.50 (GPa) Beam width 2 (m)

Density (g) 2777 (kg/m3) Beam span length 40 (m)

Beam upper and lower surface functions y ¼ 2(m), y ¼ �0.005x2+0.2x�2(m)

Central line function y ¼ �0.0025x2+0.1x(m)

F. Yang et al. / Journal of Sound and Vibration 318 (2008) 850–867 863
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Fig. 10. The deformations of the first four vibration mode for the general non-uniform and non-circular curved beams with the

clamped–clamped boundary conditions. Solid and dashed lines represent deformed and undeformed configuration: (a) the first mode,

(b) the second mode, (c) the third mode and (d) the forth mode.

Table 6

Non-dimensional natural frequencies l ¼ oR2O(gA/EI) of a uniform circular beam with the pinned–pinned boundary conditions (Case 2)

Mode F ¼ 201

Ref. [1]

F ¼ 201

Present

F ¼ 401

Ref. [1]

F ¼ 401

Present

F ¼ 801

Ref. [1]

F ¼ 801

Present

F ¼ 1201

Ref. [1]

F ¼ 1201

Present

F ¼ 1601

Ref. [1]

F ¼ 1601

Present

F ¼ 901

1 323.000 322.504 80.000 79.876 19.250 19.219 8.000 7.986 4.063 4.0548 37.016

2 690.898 689.840 172.005 171.741 42.283 42.217 18.261 18.232 9.855 9.839 81.951

3 1295.000 1293.040 323.000 322.510 80.000 79.878 35.000 34.946 19.250 19.2194 155.475

4 1988.835 1985.919 496.470 495.741 123.379 123.197 54.288 54.207 30.107 30.061 240.080

5 2915.000 2911.130 728.000 727.033 181.250 181.008 80.000 79.893 44.563 44.502 352.970

6 3933.560 3929.422 982.646 981.612 244.917 244.660 108.301 108.187 60.485 60.421 477.276

7 5183.000 5180.590 1295.000 1294.398 323.000 322.850 143.000 142.9344 80.00 79.963 629.9681

8 6525.941 6528.959 1630.739 1631.495 406.938 407.127 180.309 180.394 100.988 101.037 794.555

9 8099.000 8088.996 2024.000 2021.499 505.250 504.625 224.000 223.722 125.563 125.406 984.949

10 9766.176 9813.830 2440.797 2452.714 609.452 612.435 270.314 271.642 151.615 152.365 1195.491

Table 7

Non-dimensional natural frequencies l ¼ oR2O(gA/EI) of a uniform circular beam with the clamped–clamped boundary conditions

(Case 2)

Mode F ¼ 201

Ref. [1]

F ¼ 201

Present

F ¼ 401

Ref. [1]

F ¼ 401

Present

F ¼ 801

Ref. [1]

F ¼ 801

Present

F ¼ 1201

Ref. [1]

F ¼ 1201

Present

F ¼ 1601

Ref. [1]

F ¼ 1601

Present

F ¼ 901

1 505.404 504.629 125.792 125.599 30.894 30.846 13.328 13.307 7.190 7.178 59.861

2 910.100 908.710 226.910 226.563 56.114 56.028 24.488 24.450 13.423 13.402 108.996

3 1639.391 1636.934 409.204 408.590 101.658 101.505 44.707 44.637 24.775 24.737 197.785

4 2374.823 2371.427 593.043 592.194 147.598 147.386 65.109 65.015 36.239 36.186 287.370

5 3421.348 3417.154 854.661 853.612 219.989 212.727 94.161 94.045 52.572 52.507 414.964

6 4483.458 4479.737 1120.178 1119.249 279.358 279.127 123.651 123.549 69.154 69.097 544.627

7 5851.325 5851.922 1462.137 1462.288 364.841 364.880 161.638 161.657 90.517 90.529 712.086

8 7238.872 7256.401 1809.018 1813.407 451.555 452.656 200.173 200.666 112.189 112.469 883.499

9 8929.311 8930.239 2231.623 2231.859 557.201 557.263 247.123 247.153 138.596 138.615 1087.778

10 10,641.76 10,687.974 2659.730 2671.290 664.224 667.119 294.686 295.976 165.348 166.076 1302.309
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Table 8

Non-dimensional natural frequencies l ¼ oR2O(gA/EI) of a uniform curved beam with the clamped–pinned boundary conditions (Case 2)

Mode F ¼ 201

Ref. [1]

F ¼ 201

Present

F ¼ 401

Ref. [1]

F ¼ 401

Present

F ¼ 801

Ref. [1]

F ¼ 801

Present

F ¼ 1201

Ref. [1]

F ¼ 1201

Present

F ¼ 1601

Ref. [1]

F ¼ 1601

Present

1 407.417 407.417 101.203 101.203 24.652 24.652 10.482 10.481 5.529 5.528

2 797.909 797.912 198.816 198.817 49.045 49.045 21.312 21.312 11.608 11.608

3 1460.549 1460.585 364.441 364.451 90.415 90.417 39.670 39.671 21.911 21.911

4 2178.817 2178.995 544.006 544.051 135.304 135.315 59.619 59.624 33.130 33.132

5 3161.588 3162.378 789.684 789.882 196.709 196.758 86.899 86.921 48.465 48.478

6 4205.315 4207.747 1050.615 1051.224 261.940 262.093 115.890 115.958 64.772 64.811

7 5510.606 5517.811 1376.930 1378.732 343.511 343.963 152.137 152.339 85.157 85.271

8 6879.112 6897.378 1719.056 1723.625 429.041 430.186 190.150 190.661 106.539 106.827

9 8507.617 8520.880 2126.177 2129.496 530.817 531.649 235.380 235.752 131.977 132.188

10 10,200.606 10,262.610 2549.424 2564.929 636.629 640.509 282.407 284.135 158.430 159.404

Table 9

Non-dimensional natural frequencies l ¼ oR2O(gA/EI) of a uniform circular beam with the clamped–free boundary conditions (Case 2)

Mode F ¼ 201

Ref. [1]

F ¼ 201

Present

F ¼ 401

Ref. [1]

F ¼ 401

Present

F ¼ 801

Ref. [1]

F ¼ 801

Present

F ¼ 1201

Ref. [1]

F ¼ 1201

Present

F ¼ 1601

Ref. [1]

F ¼ 1601

Present

1 29.101 29.101 7.462 7.462 2.064 2.064 1.084 1.084 0.766 0.766

2 180.235 180.235 44.611 44.611 10.721 10.721 4.470 4.470 2.315 2.315

3 505.606 505.607 125..845 125.845 30.910 30.910 13.337 13.337 7.197 7.197

4 991.426 991.436 247.243 247.246 61.200 61.200 26.750 26.750 14.696 14.696

5 1639.392 1639.464 409.204 409.222 101.658 101.663 44.707 44.709 24.775 24.776

6 2449.366 2449.709 611.678 611.764 152.257 152.279 67.180 67.189 37.404 37.409

7 3421.348 3422.617 854.661 854.978 212.989 213.069 94.161 94.197 52.572 52.592

8 4555.335 4559.249 1138.147 1139.127 283.851 284.096 125.648 125.757 70.277 70.339

9 5851.325 5862.148 1462.137 1464.845 364.841 365.519 161.638 161.940 90.517 90.688

10 7309.317 7342.488 1826.630 1834.926 455.958 458.036 202.130 203.056 113.290 113.813
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beam with F ¼ 901 is 29.306 for Case 1 compared to 37.016 for Case 2, while the 10th natural frequency of the
beam is 234.809 for Case 1 compared to 1195.491 for Case 2. Similarly, the non-dimensional fundamental
natural frequency for the clamped–clamped circular beam with F ¼ 901 is 36.657 in Case 1 compared to
59.861 in Case 2 while the 10th natural frequency of the beam is 249.320 in Case 1 compared to 1302.309 in
Case 2.

4. Conclusions

In this study, the governing differential equations for the general curved beam vibration including and
excluding the effects of the extensibility of the curved axis, the shear deformation and the rotary inertia are
derived using the Extended-Hamilton principle and were solved using the FE method.

A ‘four-node’ Lagrangian-type curved beams element has been developed and combined with the
curvilinear integral method to solve both the uniform and non-uniform curved beam with variable curvatures.
The results for the conventional geometry (circular, parabolic, sinusoidal and elliptical curves) are in excellent
agreement with those reported in published literatures. Furthermore, a new ‘two-node’ curved beam element
has been proposed to study the curved beams’ deformation relationship excluding the effects of the
extensibility of the curved axis, the shear deformation and the rotary inertia. The curvilinear integral method
and the ‘four-node’ Lagrangian-type shape function are utilized to model the geometrical properties of the
curved beams. Results obtained are in excellent agreement with those available in literature for different
boundary conditions and curve angles. It has been shown that by using the FE method with the appropriate
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shape functions, the vibration response of the curved beams with any arbitrary geometry and different
boundary conditions can be accurately obtained.
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Appendix A

Sub-matrices for Eqs. (6b) and (6c) are

Mww ¼Muu ¼

Z 1

�1

gAðZÞNðZÞTNðZÞJocðZÞdZ, (A.1)

Mcc ¼

Z 1

�1

gIðZÞNðZÞTNðZÞJocðZÞdZ, (A.2)

Kww ¼

Z 1

�1

kqGAðZÞBðZÞTBðZÞJ�1oc ðZÞ þ
EAðZÞ

rðZÞ2
NðZÞTNðZÞJocðZÞ

� �
dZ, (A.3)

Kwu ¼ KT
uw ¼

Z 1

�1

EAðZÞ
rðZÞ

NðZÞTBðZÞ �
kqGAðZÞ
rðZÞ

BðZÞTNðZÞ
� �

dZ, (A.4)

Kwc ¼ KT
cw ¼ �

Z 1

�1

kqGAðZÞBðZÞTNðZÞdZ, (A.5)

Kuu ¼

Z 1

�1

EAðZÞBðZÞTBðZÞJ�1oc ðZÞ þ
kqGAðZÞ

rðZÞ2
NðZÞTNðZÞJocðZÞ�dZ, (A.6)

Kuc ¼ KT
cu ¼

Z 1

�1

kqGAðZÞ
rðZÞ

NðZÞTNðZÞJocðZÞdZ, (A.7)

Kcc ¼

Z 1

�1

EIðZÞBðZÞTBðZÞJ�1oc ðZÞdZþ
Z 1

�1

kqGAðZÞNðZÞTNðZÞJocðZÞdZ. (A.8)
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